Themen für Beleg-, Studien-, Bachelor- oder Masterarbeiten in der Arbeitsgruppe Mikrosystem Simulation

Die Bearbeitung der Themen und die Betreuung kann auf englisch und selbstverständlich auch auf deutsch erfolgen. Bei Interesse an einem Thema oder weiteren Fragen kommen Sie einfach vorbei!

Kontakt:  Prof. Dr.-Ing. T. Bechtold, Tel. 498-7208,Albert-Einstein-Str. 2, 1. Obergeschoss Experimentalgebäude, Raum L 126.

Mikro-Kernspintomographie


Multi-physical Modelling and Simulation

Efficient energy extraction circuits for piezoelectric energy harvester

The sinusoidal voltage generated by the piezoelectric element of an energy harvester has to be converted to a DC-signal in order to be fed to other system components. For this purpose a passive bridge rectifier is often employed. The forward voltage loss of the diodes causes significant power losses, especially at low power levels.

Using the commercial tool SIMPLORER this thesis shall investigate more elaborate circuit concepts as synchronized switching of inductors or active rectifiers. The co-simulation with existing compact numerical models of piezoelectric MEMS harvester might also be included.

Coupled Simulation of Machine Tool


Berührungslose Energieübertragung

Berührungslose Energieübertragung

Berührungslose Energieübertragung, u.a. zum Aufladen von Mobilgeräten, (nach dem Qi oder Rezence Standard) hat sich im Alltag etabliert.

Diese Thesis adressiert Anwendungen mit höheren Leistungs- und Effizienzanforderungen, wie z.B. das Nachladen von Elektromobilen. Die Zielstellung dieser Thesis ist die Entwick-lung eines Systems zur berührungslosen Energieübertragung unter Verwendung einer resonanten magnetischen Kopplung. Dies kann entweder in Form eines Simulationsmodells oder als prototypischer Aufbau erfolgen.

weiterführende Informationen: Drahtlose EnergieübertragungQi standardRezence standard


Designoptimierung

System analysis and optimization of energy harvesting modules for wireless sensor networks

The work aims at design tools for accurate analysis of multiphysical systems. The thesis shall prove the feasibility to couple numerical models of energy harvesting microstructures with existing circuitry.

Current simulation techniques neglect the impact of circuit components on the MEMS behavior. The extensive time cost of models with large dimension renders their time transient simulation prohibitive. Model order reduction (project) will prove essential in order to enable truly system-level co-simulation of these systems at drastically reduced time cost. Furthermore, the established design flow shall be extended by system optimization.


Fortgeschrittene mathematische Methoden


Interessierte Studenten wenden sich bitte an: Dr.-Ing. T. Bechtold, Raum L 126, Tel. 498-7208